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Abstract

An eight-inch-long (0.2 m) crack was found in an external helicopter

fuel-tank pylon. The damaged pylon was removed from service and

analyzed at NASA Langley Research Center to determine the cause of the

crack. Results of the analysis revealed that crack initiation occurred at

corrosion pits in a fastener hole and crack propagation was a result of

fatigue loading.

Introduction

At the U.S. Coast Guard air station in Elizabeth City, North Carolina, an eight-inch-long (0.2 m) crack

was found in an external fuel-tank pylon of a HH-60 "Jayhawk" helicopter. External fuel tanks are used

to extend the range and operation times of U.S. Coast Guard (USCG) helicopters and axe fastened to

pylons attached to the helicopter fuselage. Fuel-tank pylons are fabricated from 7075 aluminum alloy

forgings that are machined into the final configuration. The HH-60 is capable of carrying three external

pylon-drop fuel tanks: one 80-gallon (300 L) tank and two 120-gallon (450 L) tanks. The crack was

found in a 120-gallon tank pylon. Photographs of a Coast Guard HH-60 helicopter are shown in Figure 1.

The photograph of the entire helicopter fuselage in part (a) shows the location of a 120-gallon fuel tank.

As seen in part (b), the pylon that connects the fuel-tank assembly to the fuselage is normally covered and

hidden from view. A photograph of a fuel-tank pylon is shown mounted to the fuselage in part (c); the

pylon is visible because the covering has been removed for inspection.

Figure 1. Photographs are shown of the external pylon-mounted fuel-tank assembly on the HH-60 helicopter. (a) A
120-gallon fuel tank is shown on the fuselage. (b) A more detailed photograph of the fuel-tank pylon attachment is

shown. (c) A pylon is seen after the fuel-tank assembly was removed for inspection.



The failure analysis reported herein concentrated on finding evidence of fatigue loading and/or

corrosion that could lead to cracking of the fuel-tank pylon. Helicopter components are known to
experience fatigue (cyclic) loading resulting in possible fatigue cracking (refs. 1, 2). Additionally, USCG

helicopters axe routinely exposed to corrosive marine environment and cracking may be exacerbated by
environmental-load interactions that produce brittle crack growth resulting from stress corrosion cracking
and/or corrosion fatigue fief. 3). After the crack was detected, the damaged pylon was removed from

service and shipped to NASA Langley Research Center in Hampton, Virginia for detailed destructive
examinations to determine the cause of cracking.

Initial Visual Inspection

A photograph of the cracked pylon is shown as Figure 2a. The left curved-side of the pylon was

mounted vertically to the helicopter fuselage; the arrow in the upper-right comer of Figure 2a indicates
the vertical-up direction. The fuel-tank assembly was attached to the pylon through the two holes on the
far right side of Figure 2a. Loads applied to the pylon axe nominally expected in the vertically downward

direction, applied at the end of the horizontal (cantilever) portion of the pylon, creating high bending
stresses in the comer region of the pylon as indicated in Figure 2a. The crack appears to have initiated at

fastener holes in this high stress region and propagated in a vertically downward direction. Eventually the
crack propagated into a vertical stiffener and appeared to have arrested. Figure 2b is a more detailed view

of the crack region outlined in Figure 2a. The dashed line in Figure 2b parallels the crack from the
apparent region of crack initiation (fastener holes in the upper flange) to crack arrest at a vertical stiffener.

Figure 2. Photographs of the cracked pylon are shown. (a) A photograph of most of the pylon is shown. (b) A
more detailed image is given of the cracked region.

The top of the pylon upper flange, in the crack initiation region, is shown in Figure 3a. Here, the crack
is seen bisecting two fastener holes, each 3/16-inch (4.8 mm) in diameter; presumably, the crack initiated at

one of these holes. The bottom surfaces of the upper flange near these fastener holes axe shown in
Figures 3b and 3c. The two smaller holes adjacent to the large hole located on the left of Figure 3a were

used to attach the bracket shown in Figure 3b. Results presented later in this paper indicate that crack
initiation occurred at the fastener hole shown in Figure 3b.



(b) Bracket

c)

Figure 3. Photographs of the crack initiation region are shown. (a) A photograph of the crack intersecting two
fastener holes on the top of the upper flange is shown. (b) The fastener hole on left of (a) is shown from the

underside of the flange. (c) The fastener hole on right of (a) is shown from the underside of the flange.

Destructive Examination

To perform detailed examination of the crack surface, the pylon was broken by carefully applying a

load at the end of the horizontal cantilever while the curved vertical portion was locked into position.

This loading allowed the horizontal cantilevered portion of the pylon to rotate and fracture the remaining

ligament without disturbing the crack surfaces. A photograph of the broken pylon is shown in Figure 4a.

Only the crack surface associated with the smaller piece of the pylon was examined; the larger piece was

preserved for future examination. A photograph of the crack surface in the upper flange (where crack

b)

Figure 4. Photographs of the broken pylon are shown. (a) A photograph of the broken pylon is shown. (b) A
detailed photograph is given of the crack surface in the crack initiation region.



initiation appeared to occur), and a portion of the web, is shown in Figure 4b. Visual inspection of the

crack surfaces revealed dark-colored regions on the crack surfaces, primarily near the fastener holes
where the crack appeared to initiate. These dark spots, indicated in Figure 4b, axe corrosion products

(likely oxide debris) that axe typically produced during fatigue crack growth of aluminum alloys in an
aggressive environment (refs. 4, 5). A photograph of the crack surface as it propagated from right to left
into the vertical stiffener is shown in Figure 5. To the right of the curved final crack front, the fatigue

crack surface is covered with a uniform dark colored corrosion product layer. To the left of the crack
front, the fracture surface (produced as the cracked pylon was broken) is clean and free of corrosion

products.

Figure 5. A photograph of the crack surface as the crack propagated into flaevertical stiffener is shown.

Fractography

A more detailed examination of the crack surface was performed with a scanning electron microscope

(SEM). The smaller piece of the broken pylon, shown in Figure 4a, was too large for SEM examination
and was cut into smaller pieces. First, a single cut was made (indicated in Figure 6a by the dashed line)

parallel to the crack so that the entire crack surface was contained in a strip of material approximately 12-
inches (0.3 m) long. Five additional cuts were made normal to the crack surface (indicated in Figure 6b

with dashed lines) dividing the crack surface into six pieces, each approximately 2-inches (50 mm) long.
The six pieces of the crack surface were small enough to be accommodated in the SEM. Care was taken

not to cut through regions containing important crack-surface features.

Crack-surface corrosion products made SEM analyses difficult. Therefore, the crack surface was

ultrasonically cleaned in a 50% nitric acid (HNO3) solution for 60-second intervals. After the crack
surface was removed from the acid solution, it was thoroughly rinsed with water, and the cleaning

procedure was repeated before the crack surface was thoroughly cleaned. (A third 60-second exposure
was not needed.) This technique has been used at LaRC to remove oxides from crack surfaces without

altering crack-surface features of interest.

Features and characteristics of the crack surface are used to provide information about the history and
cause of the crack. The crack-surface features of primary interest to this study axe markings that result
from crack-tip deformation; herein, called deformation markings. Deformation markings axe useful



Figure 6. Two photographs are shown to illustrate how the broken pylon was cut for SEM analysis. (a) The first
saw cut removed the crack surface from the pylon. (b) The crack surface was then cut into six smaller pieces.

because they indicate the location and shape of the crack front at an instant in time. Crack surfaces

produced during constant-axnplitude fatigue loading typically have periodic deformation markings that are

nearly equally spaced (ref. 6). Where cracks are known to advance during each load cycle, the spacing

between these markings (commonly called striations) is the increment of crack advance per load cycle,

termed as the fatigue crack growth rate.* This is useful because the fatigue crack growth rate can be

related to the crack-tip load parameter, AK. Most structures (including helicopter pylons) experience

irregular variable-amplitude fatigue loading. Complex load interactions occur during variable-amplitude

loading, possibly resulting in irregular fatigue crack growth rates or crack arrest (i.e., cracks become non-

propagating). In general, it is difficult to distinguish between striation markings (produced as a crack

propagates) and crack arrest marks (produced as a crack arrests). Therefore, it is difficult to determine

fatigue crack growth rates with deformation markings produced during variable-axnplitude loading (ref.

9). Even in cases of complex variable-axnplitude loading, a great deal of information about the crack

history can be obtained from crack-surface markings. For example, both striations and crack arrest marks

indicate the progression of the crack front, so no distinction between these markings is needed to

determine the crack initiation site. During the early stages of crack growth, the crack propagates in radial

directions from the crack initiation site producing curved crack-surface markings (concave toward the

crack initiation site) that can be used to determine where crack initiation occurred.

SEM examination of the clean crack surface revealed crack-surface deformation markings, evidence

that crack propagation was a result of fatigue loading. The majority of the crack surface did not exhibit

deformation markings, but those that were found revealed that crack initiation occurred at corrosion pits

in the fastener hole of Figure 3b. The photograph of the crack surface in Figure 7a shows the region of

crack initiation; crack initiation occurred at the fastener hole in the upper right comer of the figure,

highlighted with a box. The crack surface in Figure 7b is a higher-magnification image of the crack

initiation region highlighted (box) in Figure 7a. A region of corrosion pitting is noted in Figure 7b along

the inside edge of the fastener hole (right side of the photograph). The region of crack initiation noted in

Figure 7b is shown at higher magnification in Figure 7c. Corrosion pits axe seen as a rough-textured

region on the right side of Figure 7c. Deformation markings on the crack surface are barely visible in

Figure 7c. The curved dotted line in Figure 7c shows the curvature of the deformation marks (concave to

*For aluminum alloys, striated fatigue crack growth (one striation per load cycle) is known to occur for AK > 7

MPa_/m. Multiple load cycles may occur between crack-surface marks at lower AK (refs. 7, 8).



theright)indicatingthatcrackinitiationoccurredatthecorrosionpitsseenontherightsideofthefigure.
ThesemarksaxebetterseenathighermagnificationinFigure7d.

Initiation Markings

Figure7. Thecrackinitiationregionisshowninaseriesofimages,atincreasingmagnification.(a)Photographof
thecracksurfaceinthepylonupperflangeregionisshown.Alsoshownaremicrographsof(b)cracksurfaceat

edgeoffastenerholesurface,(c)crackinitiationatcorrosionpits,and(d)cracksurfacemarkingsathigh-
magnificationincrackinitiationregion.

SEMimagesof thecrackinitiationregionof Figure7 axeshownatadifferentanglein Figure8to
illustratethecomplexnatureof thecracksurfaceandtohighlightregionsof pittingthatdidnotresultin
crackinitiation.Here,thecracksurfacewasviewedat anangle45° fromthedirectionnormalto the
cracksurface,andthespecimenisrotated90° (withrespecttotheorientationof Figure7)sothefastener
holeis orientedhorizontally.In Figure8a,theintersectionof thecracksurfacewith theedgeof the
fastenerholeis indicatedwithadashedhorizontalline;thesurfaceof theholeandthecracksurfaceare
belowandabovethedashedline,respectively.Theupperandlowersurfacesof theupperflange(shown
inFigure3)aretheedgesseenontheextremerightandleftsidesof Figure8a,respectively.Theboxesin
Figure8aidentifytworegionsof corrosionpittingin thefastenerhole:onewherecracksdidnotinitiate
(leftbox)andonewherecracksdidinitiate(rightbox).Theseregionsaxeshownathighermagnification
inFigures8band8c,respectively.
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Figure8. Micrographsofthecrackinitiationregion,viewedata45°angletothecracksurface,areshown.(a)The
cracksurfaceattheedgeofthefastenerholesurfaceisshown.High-magnificationmicrographsareshownof

corrosionpits(b)wherecracksdidnotinitiateand(c)wherecracksinitiationoccurred.

Evidenceof crack-surfacedeformationmarksatthreelocationsalongthecracksurfaceis shownin
Figure9. Thesethreelocations,identifiedinFigure9aasb,c, andd,axeshownathigh-magnificationin
Figures9b,9c,and9d,respectively.ThemarkingsobservedinFigures9band9caxenotequallyspaced,
possiblysuggestingthatcomplexvariable-amplitudeloadingoccurred.Thedeformationmarkingsshown
in Figure9dareequallyspacedandexhibitthemorphologytypicalof fatiguestriations.Theaverage
spacingbetweendeformationmarkingsisdeterminedbycountingthenumberof marksintersectinglines
alongthecrackgrowthdirection(i.e.normalto themarks).In Figure9b,8marksaxecountedalonga
line100gmlong. ForFigures9cand9d,10marksand20marksaxecountedalonglines15gmand30
gmlong,respectively.If eachdeformationmarkwasproducedbyasingleloadcycle,theaveragefatigue
crackgrowthratescorrespondingto Figures9b,9c, and9dwouldbe 1.2x 10-5m/cycle,1.5x 10-6
m/cycle,and1.5x 10-6m/cycle,respectively.ThemarkingsinFigures9band9caxenotregularlyspaced
andmaynothavebeenproducedbysingleloadcycles.Therefore,thesemarkingsdonotpermitagood
estimationof fatiguecrackgrowthrates. Thecrack-surfacemarkingsseenin Figure9darelikely
striations,eachproducedbyasingleloadcycle.Therefore,thecalculatedfatiguecrackgrowthrateof 1.5
x 10-6m/cycleis likelyagoodestimatefor thecracksurfaceof Figure9d. Basedonlaboratory7075
aluminumdata,thefatiguecrackgrowthratefor Figure9dcorrespondsto valuesof AK between15
MPa_/mand20MPa_/m(refs.10,11).

Discussion

The results of detailed destructive examinations show that crack initiation occurred at corrosion pits

that formed in a fastener hole. Corrosion problems axe greater for USCG helicopters because they operate

in a marine environment where exposure to salt-water spray - known to corrode aluminum alloys - is
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Figure9.Micrographs of crack-surface markings are shown at high magnification. (a) A photograph of the crack
surface in the pylon upper flange region is shown. High-magnification micrographs are shown of the crack surface

(b) near the crack initiation region, (c) between the fastener hole and the web, and (d) in the pylon web.

likely. Fastener holes create a crevice-like environment that entraps water resulting in a corrosive

environment where pitting is likely fief. 12). Pitting damage is difficult to detect because the damage is

highly localized (e.g. may be hidden in a fastener hole) and only affects a small amount of material.

The crack found in the fuel-tank pylon initiated at corrosion pits in the region where the highest

stresses were expected. As shown in Figure 2a, vertical-downward loading on the pylon creates a high-

stress region in the corner where the cantilever meets the vertical portion of the pylon. The stress

concentration effect of fastener holes in this region further increases the local stress state near these

discontinuities fief. 13). Finally, corrosion pitting in these fastener holes creates rough surfaces that

further increase the severity of the local stress state fiefs. 14-16). Due to these three factors (pylon

loading, fastener hole geometry, and corrosion pits) the highest local stress occurred at the fastener hole

of Figure 3b, the crack initiation site.

Deformation markings on the crack surface were used to identify the crack initiation site. However,

care must be taken when using fatigue striations to quantify the fatigue crack growth rate. Researchers

have suggested that a single striation may not be the result of a single load cycle fiefs. 7, 8). Unpublished

research for aluminum alloys by Piascik has revealed similar findings; Paris regime fatigue crack growth

(AK > 7 MPa_/m) exhibits single load cycle per striation behavior, but near the fatigue crack growth

threshold (AK < 5 MPa_/m) multiple load cycles are required per striation because more complex crack-

tip damage processes are operative. As the crack propagated through the webbing, clear evidence of

striation markings was found on the crack surface indicating a fatigue crack growth rate of approximately

10 -6 m/cycle (recall Figure 9d). Test data for similar materials indicates this occurs for values of AK

between 15 MPa_/m and 20 MPa_/m; in the range of AK where each load cycle is expected to produce one

striation. Striations in Figures 9b and 9c were not well defined possibly because the values of AK were

low, i.e. near the fatigue crack growth threshold.



The striation markings seen in Figure 9d indicate that rapid crack propagation occurred in the pylon

webbing (approximately 1.5 mm of crack growth per 1000 load cycles). As the crack grew, increases in
AK and fatigue crack growth rates likely occurred. Pylon failure was prevented because a vertical

stiffener deflected the crack causing crack arrest. Cracks tend to propagate in the direction perpendicular
to the principal (largest) normal stress, the orientation where the mode I stress intensity factor (K_) is at its

maximum value and the mode II stress intensity factor (KII) is zero (ref. 17). This stiffener likely diverted
the crack from principal stress directions, resulting in mixed-mode crack-tip loading (i.e. both K_ and KH

are non-zero) and a reduction in KI, the crack driving force. Crack arrest was likely a result of a reduction
in crack driving force and crack-face contact due to mode II (sliding-mode) displacements further

reducing the fatigue crack driving force (refs. 18, 19). The crack surface corrosion product in Figure 5
was likely produced by sliding-mode contact of rough crack surfaces.

Failure of this pylon was prevented when the vertical stiffener diverted and arrested the propagating

fatigue crack. However, prevention of similar cracking problems in the future should focus on preventing
the corrosion pitting that lead to crack initiation. In other words, preventing crack initiation (here caused
by corrosion pitting) is preferable to, and likely more successful than, relying on techniques to arrest

cracks after they develop.

Conclusions

A failure analysis was performed to determine the cause of an eight-inch-long crack found in a U.S.
Coast Guard HH-60 helicopter external fuel-tank pylon. Based on the failure analysis results presented in

this paper, it is believed the following sequence of events occurred and resulted in the crack.

1. Corrosion pitting - The initial damage occurred when corrosion pits formed in a fastener hole.

Fasteners axe known to provide a crevice-like environment where entrapped water can form a highly
corrosive environment where pitting is likely to occur.

2. Crack initiation - Crack initiation occurred in a region of high local stress; at corrosion pits in a

fastener hole, near the corner with the highest bending stress; all three factors greatly increases local state
of stress.

3. Fatigue crack propagation - Crack-surface markings indicate that crack propagation was a result of

fatigue, or cyclic, loading. Corrosion products on the crack surfaces suggest that fatigue crack growth
occurred in a corrosive environment. The presence of fatigue loading and corrosive environment
exacerbates cracking; fatigue cracks contained in 7000 series alloys exposed to air with 90% humidity

will continue to grow at extremely low loads.

4. Crack arrest - After propagating through approximately 80% of the pylon web, the crack intersected a
vertical stiffener and was diverted. Diverting the crack likely lowered the crack-tip driving force resulting
in crack arrest.
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